Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 342: 123043, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036093

RESUMO

Large quantities of organochlorine pesticides (OCPs) have been used in tropical regions. The fate processes and risks of these legacy contaminants in the tropics are poorly understood. Herein, we investigated the occurrence of three classes of widely used OCPs and their metabolites in surface and core soil from five cities across Vietnam with a prevalent tropical monsoon climate and a long history of OCP application. We aimed to elucidate migration potentials, degradation conditions, and transformation pathways and assess current health risks of these contaminants. Generally, the concentrations of OCPs and metabolites in the soil core were slightly lower than those in surface soil except for hexachlorocyclohexane (HCH) isomers. 2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane (p,p'-DDT), 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), the sum of dicofol and 4,4'-dichlorobenzophenone (p,p'-DBP), and 2,2-bis(4-chlorophenyl)-1,1-dichloroethane (p,p'-DDD) were the most abundant compounds in both surface and core soils. A uniform distribution of HCHs (the sum of α-, ß-, γ-, and δ-HCH) at trace levels was found in almost all soils, serving as evidence of the lack of recent use of HCH pesticides. Higher concentrations of DDTs (the sum of DDT, DDD, and DDE) were observed in north-central Vietnamese soil, whereas appreciable concentrations of ENDs (the sum of α- and ß-endosulfan and endosulfan sulfate) were only found in southern Vietnamese soils. Empirical diagnostic ratios indicated residuals of DDTs were mainly from technical DDT rather than dicofol, whereas aged HCHs could be explained by the mixture of lindane and technical HCH. Both historical applications and recent input explain DDTs and ENDs in Vietnamese soil. Total organic carbon performs well in preventing vertical migration of more hydrophobic DDTs and ENDs. The dominant transformation pathway of DDT in surface soil followed p,p'-DDE→2,2-bis(4-chlorophenyl)-1-chloroethylene or p,p'-DDMU→1,1-bis(4-chlorophenyl)ethylene or p,p'-DDNU→p,p'-DBP, whereas the amount of p,p'-DDMU converted from p,p'-DDD and p,p'-DDE is similar in soil core. Non-cancer risks of OCPs and metabolites in all soils and cancer risks of those chemicals in core soils were below the safety threshold, whereas a small proportion of surface soil exhibited potential cancer risk after considering the exposure pathway of vegetable intake. This study implied that organic matter in non-rainforest tropical deep soils still could hinder the leaching of hydrophobic organic contaminants as in subtropical and temperate soils. When lands with a history of OCP application are used for agricultural purposes, dietary-related risks need to be carefully assessed.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes do Solo , Praguicidas/análise , DDT/análise , Diclorodifenil Dicloroetileno/análise , Solo/química , Vietnã , Dicofol , Cidades , Hexaclorocicloexano/análise , Hidrocarbonetos Clorados/análise , Poluentes do Solo/análise , Monitoramento Ambiental , China
2.
PLoS One ; 15(7): e0236634, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706842

RESUMO

Potassium (K) input is essential for the improvement of soil fertility in agricultural systems. However, organic amendment may differ from mineral K fertilization with respect to modifying the soil K transformation among different fractions, affecting soil K availability. We conducted a 60-day lab incubation experiment to evaluate the response of soil K dynamics and availability in various fractions with a view to simulating crop residue return and chemical K fertilization in an Anthrosol of northwest China. The tested soil was divided into two main groups, no K fertilization (K0) and K fertilization (K1), each of which was subjected to four straw addition regimes: no straw addition (Control), wheat straw addition (WS), maize straw addition (MS), and both wheat straw and maize straw addition (WS+MS). Soil K levels in the available (AK) and non-exchangeable (NEK) fractions were both significantly increased after K addition, following the order of K>WS>MS. Fertilizer K was the most efficient K source, demonstrating a 72.9% efficiency in increasing soil AK, while wheat and maize straw exhibited efficiencies of 47.1% and 39.3%, respectively. Furthermore, K fertilization and wheat and maize straw addition increased the soil AK in a cumulative manner when used in combination. The mobility factor (MF) and reduced partition index (IR) of soil K were used to quantitate the comprehensive soil K mobility and stability, respectively. Positive relationships were observed between the MF and all relatively available fractions of soil K, whereas the IR value of soil K correlated negatively with both MF and all available fractions of soil K. In conclusion, straw amendment could be inferior to mineral K fertilization in improving soil K availability when they were almost equal in the net K input. Crop straw return coupled with K fertilization can be a promising strategy for improving both soil K availability and cycling in soil-plant systems.


Assuntos
Agricultura , Potássio/química , Solo/química , Triticum/metabolismo , Zea mays/metabolismo , China , Fertilizantes/análise , Potássio/metabolismo , Análise de Componente Principal , Triticum/química , Zea mays/química
3.
Environ Sci Technol ; 53(6): 3187-3197, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30793897

RESUMO

This research used a cyber-physical system (CPS) to monitor and control the extent of urea hydrolysis in nonwater urinals. Real-time pH and conductivity data were used to control urea hydrolysis inhibition under realistic restroom conditions with acetic acid addition. Variable urination frequencies and urination volumes were used to compare three conditions that affect the progression of urea hydrolysis. Mechanistic and conceptual models were created to evaluate the factors that influence the progression of urea hydrolysis in nonwater urinals. It was found that low urination volumes at low frequencies created ideal conditions for urea hydrolysis to progress. Alternatively, high urination volumes at high frequencies created pseudo-inhibitory conditions because it did not allow for sufficient reaction time or mixing with older urine in the urinal trap. The CPS was used to control urea hydrolysis inhibition by two logics: (1) reactively responding to a pH threshold and (2) predictively responding to past measurements using four lasso regression models. Results from the control logic experiments showed that acid was added once per hour under low use conditions and once in a 4 h experiment for high use conditions. The CPS allowed for full control of urine chemistry in the nonwater urinal, reducing the conditions (i.e., clogging and malodor) that have led to the removal of nonwater urinals in the United States.


Assuntos
Aparelho Sanitário , Hidrólise , Modelos Teóricos , Toaletes , Ureia
4.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3322-8, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26915186

RESUMO

Soil stratified sampling method and potassium chemical fractionation analysis were used to investigate effects of long-term shallow tillage and straw returning on soil K contents and stratification ratios in winter wheat/summer maize rotation system in Guanzhong Plain of Northwest China. The results showed that after 13-year continuous shallow tillage and straw returning, surface accumulation and stratification effect obviously occurred for soil available K (SAK) and non-exchangeable K (NEK), which was particularly remarkable for SAK and its fractions. Serious depletion of SAK occurred in 15-30 cm soil layer, and the SAK value was lower than the critical value of soil potassium deficiency. Meanwhile, significant differences were found between SR1 and SR2 values of SAK and its fractions, SR was obtained by values of topsoil layer (0-5 cm) divided by corresponding values of lower soil layers (5-15 cm layer, SR1, or 15-30 cm layer, SR2). However, no significant difference was observed between SR values of NEK and mineral K. In conclusion, returning of all straw over 10 years in the winter wheat/summer maize rotation system contributed greatly to maintaining soil K pool balance, while special attention should be paid to the negative effects of surface accumulation and stratification of SAK on soil K fertility.


Assuntos
Agricultura/métodos , Potássio/análise , Solo/química , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...